NACA RM E51J17 ¥, To ## RESEARCH MEMORANDUM PERFORMANCE COMPARISONS OF NAVY JET MIX AND MIL-F-5624A (JP-3) FUELS IN TUBULAR AND ANNULAR COMBUSTORS By Richard J. McCafferty Lewis Flight Propulsion Laboratory Cleveland, Ohio CLASSIFICATION CHANGED UNCLASSIFIED LIBRARY COPY JUN 4 1954 LANGLEY AERONAUTICAL LABORATORY LIBRARY, NACA LANGLEY FIELD, VIRGINIA euthority of Flasa PA 2 Date 10-31:58 CLASSIFIED DOCUMENT This material contains information affecting the National Defense of the United States within the meaning of the exploring laws, Wild 18, Charles, We and Me, the transmission or revelation of which in any manner to the unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON June 3, 1954 ### CONFIDENTIAL CINCI Vacilles #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM PERFORMANCE COMPARISONS OF NAVY JET MIX AND MIL-F-5624A (JP-3) FUELS IN TUBULAR AND ANNULAR COMBUSTORS By Richard J. McCafferty #### SUMMARY An investigation was conducted to compare the performances of Navy Jet Mix and MIL-F-5624A (JP-3) fuels in single combustors from current turbojet engines. The Navy Jet Mix fuel used was composed of three parts MIL-F-7914, grade JP-5 fuel and one part unleaded MIL-F-5572 fuel. Combustion efficiencies and altitude operational limits were determined with both fuels in the J33, J35, J47, and NACA experimental annular combustors in a range of altitude from 20,000 to 60,000 feet and engine rotor speed from 40- to 100-percent normal rated at a flight Mach number of 0.6. Carbon-forming tendencies of both fuels were determined in the J33 combustor. The results indicate that the unleaded Jet Mix fuel could be utilized satisfactorily over the normal operating range in a number of representative current turbojet engines. Small (3 to 5 percent) positive or negative variations in combustion efficiency occurred between the two fuels but this variation depended on the particular engine operating condition. The Jet Mix fuel gave lower altitude limits than JP-3 fuel throughout the altitude-speed range investigated in the J33 combustor; however, with the other tubular combustors a difference in limits was obtained only in the low rotor-speed range. The variation in fuel type did not affect the altitude operational limits of the NACA experimental annular combustor. Excessive carbon deposition is not predicted for unleaded Jet Mix fuel although this property may be marginal. The aromatic content of this particular Jet Mix fuel was 13.4 percent; Jet Mix fuels containing higher percentages of aromatic constituents may give more carbon deposition. Also, the Jet Mix fuel tested did not contain the tetraethyl lead that would normally be present. The effects of the lead additive were not determined. #### INTRODUCTION Carrier-based jet aircraft operate on high-volatility, low-flashpoint fuel which must, for safety reasons, be stored in protected, centrally located bunkers aboard the carriers. The capacity of these bunkers is much less than the capacity of the perimeter bunkers containing the necessary fuel-oil supply. The jet-fuel capacity could be increased and the frequency of refueling decreased by utilizing some of these perimeter bunkers for jet-fuel storage. Safety requirements permit only high-flash-point (above 140° F) fuel to be stored in these unprotected bunkers and such fuel would not perform satisfactorily or meet freezing-point requirements in present turbojet aircraft. If a special kerosene type fuel were obtained which would meet the highflash-point safety requirements, this fuel could then be stored in perimeter bunkers and blended with carrier reciprocating-engine aircraft gasoline (MIL-F-5572, grade 115/145) as required. A blend of 75percent high-flash-point kerosene fuel (MIL-F-7914, grade JP-5) and 25-percent aviation gasoline met the freezing-point requirements and was designated Jet Mix fuel. The utilization of this fuel is contingent upon the satisfactory operation of jet engines on a blend of this type. Investigations comparing the performance of Jet Mix fuel and other fuels in current turbojet engines and their combustors were conducted at the NACA Lewis laboratory. Results of studies in a full-scale J34 turbojet engine comparing Jet Mix and unleaded clear gasoline fuels are reported in reference 1. This report presents data obtained with Jet Mix and MIL-F-5624A (JP-3) fuels in several single-combustor test units, and evaluates combustion efficiency, combustion stability, and carbon deposition. The Jet Mix fuel used in this investigation was blended by volume from one part unleaded MIL-F-5572 fuel and three parts MIL-F-7914, grade JP-5 fuel. The blend did not contain the tetraethyl lead that would be introduced with leaded MIL-F-5572, grade 115/145 fuel used aboard carriers. Combustion efficiencies and altitude operational limits of both fuels were determined in J33, J35, J47, and NACA annular combustors. The tubular combustors were standard production units all currently operated on MIL-F-5624A (JP-3) fuel; the NACA annular combustor is an experimental unit developed to operate on MIL-F-5624A (JP-3) fuel. The performance variables were determined in a range of altitude from 20,000 to 60,000 feet, engine rotor speed from 40- to 100-percent normal rated, and a flight-Mach number of 0.6. Carbon-forming tendencies of both fuels were determined in the J33 combustor only and the results are presented and discussed in relation to the NACA carbon-deposition correlation used in reference 2. #### APPARATUS AND PROCEDURE The combustors used in this investigation were installed in the laboratory air-supply and exhaust ducting with valves located upstream and downstream to control air flow rates and pressures. Electric and gasoline-fired preheaters were used to control the combustor inlet-air temperatures. The detailed instrumentation and equipment features of the combustors used have been presented in previous NACA reports: the J33-A-23, the J35-C-3, the J47, and the NACA annular combustor, except for minor changes in air admission holes in the liner, in references 3, 4, 5, and 6, respectively. Estimated combustor inlet-air conditions and combustor outlet-gas temperatures that were used to simulate engine operation at various altitudes and engine rotor speeds can be found for the J33, the J35, the J47, and the NACA annular combustors, in references 7, 4, 5, and 6, respectively. The combustion efficiency values reported herein were computed as the ratio of the measured enthalpy rise of the fuel-air mixture across the combustor to the heating value of the fuel. A correction was made for the difference between the enthalpy of the carbon dioxide and water vapor in the burned mixture and the enthalpy of the oxygen removed from the air by the formation of the carbon dioxide and water vapor. The thermocouple indications were taken as true values of total temperature and no corrections were made for radiation or stagnation effects. The data presented herein should not be used to compare combustor type and design because the values of combustion efficiency reported were, in some cases, obtained from a limited number of exhaust-gas temperature probes. However, the differences in performance obtained between the two fuels are considered sufficiently accurate as any temperature measuring errors would be present in both sets of data obtained with each combustor. #### FUELS The analyses of the fuels used in this investigation are shown in table I. The MIL-F-5624A (JP-3) fuel (NACA fuel 51-186) was a representative batch as received from the supplier and met the JP-3 fuel specification with the exception of the freezing point, which was 14° F too high. The Jet Mix fuel (NACA fuel 51-201) was blended by volume at the Lewis laboratory from one part unleaded MIL-F-5572 fuel (NACA fuel 49-167) and three parts MIL-F-7914, grade JP-5 fuel (NACA fuel 51-170). The unleaded MIL-F-5572 fuel was the base stock used in the preparation of grade 115/145, MIL-F-5572 fuel. The unleaded Jet Mix fuel falls within MIL-F-5624A (JP-4) fuel specifications except that the freezing point is 16° F too high; therefore, the comparisons between JP-3 and Jet Mix fuel performance are applicable to comparisons between JP-3 and JP-4 fuel performance. #### RESULTS AND DISCUSSION Combustion Efficiency and Altitude Operational Limits The data obtained with several combustors and Jet Mix and JP-3 fuels are summarized in table II. The variation of combustion efficiency with simulated engine rotor speed for the two fuels is shown in figure 1 for each combustor investigated over an altitude range from 20,000 to 60,000 feet. Cross plots showing the effect of altitude on the combustion efficiencies of the two fuels at two constant simulated rotor-speed values are presented in figure 2. A comparison of engine altitude operational limits obtained with both fuels for all the combustors is presented in figure 3. J33 combustor. - The combustion efficiency values obtained in this combustor with Jet Mix fuel are nearly as high as those obtained with JP-3 fuel throughout the altitude and rotor-speed range investigated, the maximum difference being approximately 3 percent (fig. 1(a)). An exception is the high simulated rotor speed and 60,000-foot altitude condition where the combustion efficiency of JP-3 fuel decreases very rapidly to a value about 10 percent lower than that of the Jet Mix fuel. The altitude operational limits with Jet Mix fuel are 7500 to 8000 feet lower than the limits with JP-3 fuel, as shown in figure 3(a). J35 combustor. - The combustion efficiency values obtained with Jet Mix fuel in this combustor are better than those obtained with JP-3 fuel at 90-percent simulated rated rotor speed; however, the order is reversed at the low simulated rotor-speed condition. The maximum difference in combustion efficiency at either speed was about 4 percent (fig. 2(b)). The altitude operational limit curves followed a similar pattern, with JP-3 fuel providing limits 12,000 feet higher than Jet Mix fuel at 40-percent simulated rotor speed, as shown in figure 3(b). As simulated rotor speed increased, the difference decreased; at 65-percent normal rated rotor speed, the altitude operational limits of the two fuels are identical. J47 combustor. - The combustion efficiency data obtained with this combustor indicate the same trends observed in the J35 combustor; that is, at the low simulated rotor-speed condition (fig. 2(c)), the JP-3 fuel provides higher efficiency values over most of the altitude range investigated, whereas at the high simulated rotor-speed condition the order is reversed. The maximum difference in combustion efficiency was 2428 greater with this combustor, being approximately 8 percent at the low simulated rotor-speed condition. The altitude limit curve obtained with each fuel is identical at each end of the range of rotor speeds investigated (fig. 3(c)), but elsewhere the limits observed with Jet Mix fuel were as much as 7000 feet lower. Annular combustor. - The Jet Mix fuel gave higher efficiencies in the annular combustor at altitudes above 30,000 feet and the low simulated rotor-speed condition, with a maximum difference of 6 percent at 40,000 feet, as shown in figure 2(d). At the high simulated rotor-speed condition, the JP-3 fuel gave higher combustion efficiencies over the altitude range investigated, varying from 1 percent at 30,000 feet to 9 percent at 50,000 feet. No differences in altitude operational limits of the two fuels were observed in this combustor. The three tubular combustors used in this investigation had, in general, higher altitude operational limits with JP-3 fuel than with Jet Mix fuel. The difference in combustion efficiency values obtained with each fuel depended on the specific altitude and rotor-speed condition simulated; generally, the JP-3 fuel provided efficiencies 3 to 5 percent higher than Jet Mix fuel at the lowest simulated rotor speeds and altitudes investigated, whereas the Jet Mix fuel provided efficiencies 2 to 3 percent higher than JP-3 fuel at the higher simulated rotor speeds and altitudes investigated. The trends in combustion efficiency data for the NACA annular combustor are opposite to those obtained with the tubular combustors and no difference in altitude limits was observed with the two fuels in the annular combustor. #### Carbon-Deposition Characteristics The amounts of carbon formed by the two fuels in 4 hours of operation of the J33 combustor are plotted in figure 4 on a previously developed correlation curve given in reference 3. The unleaded Jet Mix fuel formed twice as much carbon (7 g) as did the particular JP-3 fuel used in this investigation. Single-combustor and full-scale engine carbon-deposition values are analyzed and plotted on this correlation in reference 2, showing that a fuel having an NACA K factor of 310 or less will not give carbon-deposition problems in current turbojet engines that have been designed for use with JP-3 type fuels. Figure 4 shows that Jet Mix fuel has a K factor of approximately 305 and therefore will operate satisfactorily without forming excessive carbon deposits. This fuel quality estimate does indicate, however, that Jet Mix fuel is marginal with respect to carbon deposition and that other Jet Mix fuels with a larger percentage of aromatic constituents can be expected to yield more carbon. The tetraethyl lead additive that would be present when the fuel is blended from leaded MIL-F-5572 fuel aboard carriers could result in increased deposits. An investigation of carbon deposition in a J33 single combustor using fuels containing metallic organic additives, including tetraethyl lead, is described in reference 8. The results indicated that the concentration of tetraethyl lead that would be present in Jet Mix fuels used in carrier-based aircraft would probably decrease carbon formation but the added lead oxide deposition would probably increase the total weight of deposits. #### CONCLUDING REMARKS The performance investigation with both tubular and annular type combustors indicates that Jet Mix fuel can be used satisfactorily over the normal operating range in a number of representative current turbojet engines. A small (3 to 5 percent) gain or loss in combustion efficiency from that provided by the JP-3 fuel used in this investigation may result but the variation in performance may depend on the particular altitude and rotor speed condition at which the engine is operated if the Jet Mix fuel is used. In the J33 combustor, the altitude limits were lowered approximately 8000 feet with Jet Mix fuel\_throughout the simulated rotor speed and altitude range investigated. For the other tubular combustors, the Jet Mix fuel gave lower altitude limits than the JP-3 fuel only in the low simulated rotor-speed range. No difference in altitude-operational limits between fuels was found with the experimental NACA annular combustor. No excessive carbon deposits were encountered with unleaded Jet Mix fuel, although this fuel may be marginal in this respect. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, April 21, 1954 #### REFERENCES - 1. Useller, James W., Harp, James L. Jr., and Barson, Zelmar: Altitude Performance of Annular Combustor Type Turbojet Engine with JFC-2 Fuel. NACA RM E51J26, 1952. - 2. Wear, Jerrold D., and Useller, James W.: Carbon Deposition of Several Special Turbojet-Engine Fuels. NACA RM E51CO2, 1951. - 3. Wear, Jerrold D., and Douglass, Howard W.: Carbon Deposition from AN-F-58 Fuels in a J33 Single Combustor. NACA RM E9D06, 1949. NACA RM E51J17 - 4. McCafferty, Richard J.: Liquid-Fuel-Distribution and Fuel-State Effects on Combustion Performance of a Single Tubular Combustor. NACA RM E51B21, 1951. - 5. Cook, William P., and Butze, Helmut F.: Investigation of Altitude Ignition, Acceleration and Steady-State Operation with Single Combustor of J47 Turbojet Engine. NACA RM E51A25, 1951. - 6. Zettle, Eugene V., and Mark, Herman: Simulated Altitude Performance of Two Annular Combustors with Continuous Axial Openings for Admission of Primary Air. NACA RM E50El8a, 1950. - 7. Dittrich, Ralph T., and Jackson, Joseph L.: Altitude Performance of AN-F-58 Fuels in J33-A-21 Single Combustor. NACA RM E8L24, 1949. - 8. Jonash, Edmund R., Wear, Jerrold D., and Cook, William P.: Effect of Fuel Additives on Carbon Deposition in a J33 Single Combustor. I Three Metallic-Organic Additives. NACA RM E52H21, 1952. | | | | MIL-F-7914, | | |------------------------|--------------------|-----------------|-------------|------------| | Fuel properties | MIL-F-5624A (JP-3) | Navy Jet Mix | grade JP-5 | MIL-F-5572 | | | (NACA fuel 51-186) | (NACA fuel | (NACA fuel | (NACA fuel | | | | 51-201) | 51-170) | 49-167) | | A.S.T.M. distillation | | | } | | | D86-46, (°F) | | | ļ | | | Initial boiling point | 118 | 142 | 357 | 120 | | Percentage evaporated | | | | | | 5 | 158 | 192 | 371 | 136 | | 10 | 177 | 230 | 375 | 161. | | 20 | 205 | 289 | 385 | 182 | | 30 | 234 | 338 | 393 | 196 | | 40 | 263 | 371 | 402 | 205 | | 50 | 294 | 394 | 411 | 210 | | 60 | 328 | <b>4</b> 07 | 421 | 217 | | 70 | 359 | <del>4</del> 20 | 433 | 221 | | 80 | 397 | <del>4</del> 36 | <b>44</b> 8 | 227 | | 90 | 433 | <b>4</b> 57 | 464 | 239 | | Final boiling point | 492 | 499 | 502 | 309 | | Residue (percent) | 1.3 | 1.1 | 0.7 | 1.0 | | Loss (percent) | 1.1 | 1.0 | .2 | 2.0 | | Freezing point (°F) | -62 | -60 | | | | Aromatics | 9.0 | 13.4 | | | | Silica gel (percent by | 3.0 | 701-2 | | | | volume) | | | Ì | | | Olefins | | | | | | Silica gel (percent by | .5 | .5 | | | | weight) | | | į | | | Gravity | | | | [ ! | | OAPT | 55.8 | 48.7 | 43.7 | 66.3 | | Specific | .756 | .785 | .808 | .715 | | Reid vapor pressure | 6.5 | 2.0 | .2 | 5.0 | | (lb/sq in.) | | | | ļ | | Hydrogen-carbon ratio | .171 | .164 | | | | Heat of combustion | 18,740 | 18,670 | | | | (Btu/lb) | | | 1 | | | Gum, (mg/100 ml) | | _ | 1 | | | Air jet residue | 1 | 2 | | | | Accelerated | 5 | 4 | | | | Aniline point (°F) | 137.1 | 142.2 | 145.8 | | | Bromine number | •7 | .5 | | | | Flash point (OF) | | | 142 | | TABLE II - PERFORMANCE DATA FROM SEVERAL COMBUSTORS OPERATING WITH MIL-F-5624A (JP-5) AND JET MIX FUELS AT MACH MUMBER 0.60 (a) JSS combustor | Simulated<br>altitude<br>(ft) | Percent<br>rated<br>engine<br>speed | Combustor<br>inlet total<br>pressure<br>(in. Hg) | Combustor<br>inlet<br>temperature<br>(°R) | Air flow<br>(lb/sea) | Combustor<br>reference<br>velocity<br>(ft/sec) | Fuel flow<br>(lb/hr) | Fuel-air<br>ratio | Mean com-<br>bustor cutlet<br>temperature<br>(OR) | Hean tem-<br>perature<br>rise through<br>combustor<br>(°P) | Combustion efficiency | Total-<br>pressure<br>drop through<br>combustor<br>(in. Hg) | Puel nozzle<br>differential<br>pressure<br>(in. Hg) | |-------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------| | | | | | | Ю | U-F-5624A | (JP-3) n | zel | | | | • | | 20,000 | 60<br>70<br>80 | 33,2<br>41.3<br>51.5 | 605<br>654<br>709 | 2.13<br>2.68<br>3.13 | 109<br>119<br>121 | 50.7<br>64.4<br>83.6 | 0.00851<br>.00867<br>.00742 | 995<br>1090<br>1245 | 590<br>456<br>536 | 0.781<br>.875<br>.979 | 2.9<br>3.8<br>4.6 | 6<br>12<br>57 | | 50,000 | 90<br>60<br>70<br>80<br>80 | 66.5<br>22.6<br>28.3<br>35.9<br>35.9<br>45.2 | 752<br>570<br>616<br>670<br>669<br>724 | 3.43<br>1.52<br>1.90<br>2.21<br>2.20<br>2.44 | 108<br>108<br>116<br>118<br>115<br>110 | 129.4<br>40.5<br>49.7<br>64.5<br>65.5<br>95.4 | .0105<br>.00740<br>.00727<br>.00811<br>.00827 | 1515<br>930<br>1045<br>1225<br>1230<br>1510 | 783<br>360<br>426<br>555<br>561<br>786 | 1.03<br>.642<br>.785<br>.925<br>.918 | 4.9<br>2.2<br>2.9<br>3.3<br>3.2<br>3.8 | 76<br><br>7<br>13<br>13<br>39 | | 40,000 | 100<br>80<br>70<br>80<br>90 | 55.3<br>14.5<br>18.5<br>23.5<br>29.8 | 778<br>548<br>595<br>647<br>700 | 2.80<br>1.02<br>1.24<br>1.44<br>1.59 | 103<br>109<br>112<br>112<br>105 | 139.8<br>54.6<br>57.6<br>47.3<br>67.1 | .0149<br>.00946<br>.00845<br>.00916<br>.0118 | 1845<br>908<br>1010<br>1210<br>1500 | 1067<br>557<br>414<br>565<br>800 | 1.01<br>1.03<br>.498<br>.652<br>.831 | 3.8<br>1.5<br>1.2<br>2.2<br>2.3 | 92<br><br>8<br>17 | | 50,000 | 100<br>80<br>80 | 36.3<br>9.0<br>9.0 | 753<br>550<br>550 | 1.71<br>.648<br>.842 | 99.9<br>110<br>110 | 97.4 | .0158<br> | 1820<br>equired temper:<br> 910 | 1067<br>ature rise un:<br> 560 | .971<br>attainable<br> .348 | 2.5 | 42 | | 60,000 | 70<br>80<br>90<br>100<br>70<br>80 | 11.5<br>14.5<br>18.2<br>22.5<br>7.2<br>9.1 | 598<br>648<br>702<br>754<br>596<br>648 | .787<br>.905<br>.986<br>1.010<br>.485 | 118<br>114<br>107<br>95.2<br>113<br>112 | 51.4<br>55.0<br>45.1<br>62.0<br>43.8<br>40.0 | .0111<br>.0107<br>.0127<br>.0171<br>.0250 | 1015<br>1210<br>1500<br>1815<br>1010 | 419<br>562<br>798<br>1061<br>414<br>567 | .505<br>.713<br>.876<br>.895<br>.229 | 1.2<br>1.6<br>1.7<br>1.5<br>.9 | | | ··· | 90<br>100 | 11.4 | 699<br>753 | .809<br>.854 | 105<br>99.0 | 39.1<br>44.1 | .0178<br>.0187 | 1500<br>1820 | 801<br>1067 | .636<br>.828 | 1.0<br>1.0 | | | | | | | | | Jet Mi: | fuel | | | | | | | 20,000 | 60<br>70<br>80 | 35.1<br>41.5<br>51.6 | 606<br>655<br>710 | 2.13<br>2.67<br>3.13 | 109<br>119<br>121 | 52.0<br>63.0<br>85.5 | 0.00680<br>.00655<br>.00759 | 995<br>1090<br>1245 | 589<br>455<br>535 | 0.761<br>.690<br>.859 | 2.9<br>5.7<br>5.0 | 7<br>12<br>57 | | 30,000 | 90<br>80<br>70<br>80<br>80 | 65.0<br>22.6<br>28.3<br>35.8 | 727<br>569<br>616<br>670<br>670 | 3,52<br>1,54<br>1,89<br>2,21<br>2,20 | 111<br>109<br>116<br>116<br>115 | 188.1<br>42.6<br>50.8<br>66.6<br>66.0 | .0109<br>.00768<br>.00747<br>.00836<br>.00833 | 1510<br>935<br>1040<br>1250<br>1225 | 783<br>366<br>424<br>580<br>555 | 1.00<br>.632<br>.758<br>.910<br>.905 | 5.0<br>2.2<br>2.9<br>3.2<br>3.3<br>3.5 | 76<br>6<br>7<br>13<br>13 | | 40,000 | 90<br>100<br>80<br>80<br>70<br>90 | 45.2<br>55.6<br>14.4<br>14.4<br>18.8<br>23.4 | 724<br>778<br>549<br>547<br>596<br>647 | 2.44<br>3.61<br>1.04<br>1.02<br>1.24 | 110<br>103<br>112<br>109<br>112<br>111 | 97.2<br>144.2<br>36.9<br>36.7<br>38.9<br>49.1 | .0111<br>.0153<br>.00988<br>.0100<br>.00870 | 1505<br>1845<br>906<br>905<br>1010 | 781<br>1067<br>556<br>358<br>414 | .982<br>1.01<br>.479<br>.475<br>.858<br>.802 | 3.5<br>3.8<br>1.6<br>1.5<br>1.8<br>2.2 | 40<br>98<br><br><br>8 | | 50,000 | 90<br>100<br>60<br>70 | 29.6<br>36.3<br>9.0<br>11.5 | 701<br>752<br>549<br>596 | 1.43<br>1.58<br>1.70<br>.846<br>.793 | 105<br>99.0<br>110<br>116 | 67.9<br>98.5<br><br>34.1 | .00953<br>.0120<br>.0161 | 1010 | 563<br>799<br>1068<br>erature rise t<br>414 | 950<br>958<br>mattainable | 2.5 | 16<br>40 | | 60,000 | 80<br>90<br>100<br>90<br>100 | 14.5<br>18.2<br>22.5<br>11.4<br>14.0 | 548<br>702<br>753<br>700<br>753 | .900<br>.980<br>.985<br>.612<br>.652 | 113<br>106<br>92.8<br>106<br>98.8 | 36.4<br>47.0<br>63.0<br>33.6<br>44.4 | .0112<br>.0153<br>.0178<br>.0153<br>.0189 | 1210<br>1500<br>1820<br>1500<br>1825 | 562<br>798<br>1067<br>800<br>1072 | .685<br>.941<br>.670<br>.756<br>.825 | 1.8<br>1.6<br>1.6<br>1.0 | 15<br> | TABLE II - PERFORMANCE DATA FROM SEVERAL COMBUSTORS OPERATING WITH MIL-F-5624A (JP-3) AND JET MIX FUELS AT MACH NUMBER 0.60 - Continued (b) J35 combustor | Simulated<br>altitude<br>(ft) | Simulated<br>engine<br>speed<br>(rpm) | Combustor<br>inlet<br>static<br>pressure<br>(in. Hg) | Combustor<br>inlet<br>temperature<br>(°R) | Air flow<br>(1b/sec) | Combustor<br>reference<br>velocity<br>(ft/sec) | Fuel flow<br>(lb/hr) | Fuel air<br>ratio | Mean com-<br>bustor cutlet<br>temperature<br>(R) | Meen tem-<br>perature rise<br>through com-<br>bustor.<br>(°F) | Combustion<br>efficiency | | Fuel<br>nozzle<br>differential<br>pressure<br>(in. Hg) | |-------------------------------|---------------------------------------|------------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------------|-----------------------------------|-------------------|--------------------------------------------------|---------------------------------------------------------------|--------------------------|--------------|--------------------------------------------------------| | | | | | | | MIXF~5624. | A (JP-5) | fue1 | | | <del>'</del> | L | | 20,000 | 3000 | 25<br>27<br>35<br>47 | 550<br>570 | 1.4 | 50.6 | 18.5 | 0.00367 | 7 <b>4</b> 0<br>810 | 210<br>240 | 0.740 | | | | | 4000 | 27 | 570 | 5.2 | 78.1 | 28.5 | .00544 | 810 | | .907 | | | | | 5000<br>6000 | 35 | 610 | 3.2 | 87.4 | 52 | .00452<br>.00646 | 925 | 316 | .914 | | 51. | | 30,000 | 3000 | 47 | 675<br>490 | 4.3 | 96.8<br>51.2 | 100 | .00646 | 1140<br>890 | 465 | .965 | | 57 | | 30,000 | 1 40000 | 15<br>15 | 525 | 1.6 | 69.5 | 19<br>23.5 | .00528 | 780 | 200<br>256 | .490 | | | | | 5000 | 24 | 575 | 2.3 | 86.4 | 38.5 | .00465 | 885 | 310 | .748<br>.870 | | 33 | | | 6000 | 33 | 635 | 8.0 | 90.5 | 77 | 00713 | 1130 | 495 | .928 | | 33 | | | 7000 | 44 | 700 | 5.6 | 89.7 | 153 | -0118 | 1510 | 810 | .954 | | 63<br>77 | | 40,000 | 3000 | 10 | 490 | 0.70 | 55.8 | 7.0 | .00278 | 4-010 | | mit blow-ou | | · · · · · · · · · · · · · · · · · · · | | , | 4000 | 10<br>12 | 505 | 1,1 | 72.6 | 20 | .00505 | 740 | 255 | .602 | ĭ | | | | 5000 | 15 | 555 | 1.5 | 87.0 | 28.5 | .00505 | 860 | 305 | .756 | | 18 | | | 600Q | 21 | 815 | 2.0 | 91,8 | 55 | .00764 | 1120 | 505 | .882 | | 58 | | | 7000 | 15<br>21<br>28<br><b>54</b><br>8 | 660 | 2.5 | 87.4 | 102 | .0123 | 1510 | 850 | .938 | | 59<br>76<br>87 | | | 8000 | 34 | 740 | 2.6 | 88.6 | 164 | .0175 | 1900 | 1160 | .960 | | 87 | | 50,000 | 4000 | . 8 | 505 | 0.70 | 89.3 | 15.5 | .00615 | - | | nit blow-out | <u>;</u> | · · · · · · · · · · · · · · · · · · · | | | 5000<br>6000 | 10<br>14 | 550 | 0.90 | 77.6<br>82.6 | 23 | .00710 | 860 | 310 | .575 | i | == | | | 7009 | 18 | 615<br>680 | 1.2 | 82.6 | 1 42<br>70 | .00972 | 1120<br>1510 | 505<br>830 | .697<br>.811 | | 759 | | | 8000 | . 21 | 740 | 1.6 | 88.3 | 1112 | .0145 | 1900 | 1160 | .862 | | 76<br>85 | | 80,000 | 5000 | 7 | 550 | 0.70 | 86.2 | 1 <del>1 1 1</del> 1 | .00833 | 1900 | 1100<br>Tean 14: | mit blow-out | | | | 00,000 | 6000 | ė | 815 | 0.90 | 86.4 | 42<br>72<br>113<br>21<br>51<br>64 | ,0157 | 1120 | 505 | .438 | i | 61 | | | 7000 | 12<br>15 | 880. | 1.0 | 86.4<br>88.8 | 64 | 0178 | 1510 | 830 | .657 | | 76 | | • | 8000 | .15 | 74 <u>.</u> 0 | 1.1 | 96.0 | 86 | .0217 | 1900 | 1160 | .784 | | 65 | | | : | | h.e, | <del></del> | · · · · · · · · · · · · · · · · · · · | Jet Mi | x fuel | | | | | | | 20,000 | 3000 | 23<br>27 | 550 | 1.4 | 50.6 | 20.0 | 0.00597 | 740 | 210 | 0.886 | _ | | | • | 4000 | 27 | 570 | 2.3 | 75.1 | 30.5 | .00368 | 740<br>810 | 210<br>240 | .850 | | 26 | | | 5000 | <b>3</b> 5 | 810 | 3.2 | 87.4 | 53 | .00450<br>.00672 | 926 | 315 | .902 | | 51 | | | 8000 | 47 | 675 | 4.3 | 96.8 | 104 | .00872 | 1140 | 465 | .932 | | 64 | | 30,000 | 3000 | 15 | 490 | 1.0 | 61.2 | 17.0 | .00472 | | Lean 11 | | - | | | | 4000<br>5000 | 19 | 525 | 1.6 | 69.3<br>86.4 | 25.0 | 00434 | 760<br>885 | 235 | .706 | | 77 | | | 5000<br>6000 | 24<br>35 | 575<br>635 | 3.0 | 90.5 | 40.0<br>82 | .00483 | 1130 | 310<br>49 <del>5</del> | .843<br>.877 | | 40 | | | 7000 | 44 | 695 | 3.6 | 89.1 | 157 | .0121 | 151Q | 815 | .940 | | 65<br>77 | | 40,000 | 4000 | 10 | 505 | 1.1 | 72.6 | 28.5 | .00720 | 740 | 235 | .426 | | | | 40,000 | 5000 | า๊รั | 580 | î.ŝ | 87.8 | 29.5 | 00546 | 860 | 300 | .722 | | 24<br>65<br>78<br>89 | | | 6000 | ĝĩ | 616 | 2.0 | 91.8 | 60 | .00855 | 11,20 | 506 | .814 | | 85 | | | 7000 | 26 | 680 | 2.3 | 87.4 | 106 | 0126 | 1510 | 830 | 906 | **** | 78 | | | 8000 | 34 | 740 | 2.6 | 88.6 | 172 | .0184 | 1900 | 1160 | .918 | | 89 | | 50,000 | 4000 | 12<br>16<br>21<br>26<br>34<br>8 | 500 | 0.71 | 69.6 | 24.5 | ,00958 | <b></b> | Lean li | mit blow-ou | t | | | | 5000 | 10 | 560 | 0.90 | 79.0 | 21.5 | .00664 | 860 | 300 | .596 | | [ | | | 8000 | 14 | 815 | 1.2 | 82,6 | 47.0 | .0109 | 11,20 | 505 | .626 | | 52 | | | 7000 | 18 | 680 | 1.4 | 82.9 | 69 | .0137 | 1510 | 830 | .847 | **** | 74 | | | 8000 | 21<br>7 | 740 | 1.5 | 88.3 | 110 | .0191 | 1900 | 11.60 | 886 | ~ | 85 | | 60,000 | 5000 | 7 | 560 | 0.70 | 87.8 | 21.0 | .00855 | 4 | Lean 11 | | | | | • | 8000<br>7000 | 9<br>12 | 615<br>680 | 0.90 | 96.4 | 56<br>64 | .0173 | 1120<br>1510 | 505 | .400 | | 89 | | ř | 80000 | 15 | 740 | 1.0<br>1.1 | 88.8<br>85.0 | 85 | .0178 | 1800 | 830<br>1160 | .660<br>.792 | | 78<br>81 | | | | | , <del></del> - | | 00.0 | 940 | 1.0510 | ابتصطبا | TIDO | 125 | | aT | TABLE II - PERFORMANCE DATA FROM SEVERAL COMBUSTORS OPERATING WITH MIL-F-5824A (JP-3) AND JET MIX FUELS AT MACH NUMBER 0.80 - Continued (c) J47 combustor | Simulated<br>altitude<br>(ft) | Simulated<br>engine<br>speed<br>(rpm) | Combustor<br>inlet<br>total<br>pressure<br>(in. Hg) | Combustor<br>inlet<br>temperature<br>(OR) | Air flow<br>(1b/sec) | Combustor<br>reference<br>velocity<br>(ft/sec) | Fuel flow<br>(1b/hr) | Fuel air<br>ratio | Mean com-<br>bustor outlet<br>temperature<br>(OR) | Mean tem-<br>perature rise<br>through com-<br>bustor<br>(°F) | Combustion efficiency | | Fuel<br>nossle<br>differential<br>pressure<br>(in. Hg) | |-------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------------|----------------------|----------------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------|---------------|--------------------------------------------------------| | | | | | | | MIL-F-58 | 24A (JP-3 | fuel | | | ·-·· | | | 20,000 | 3000 | 20.7 | 528 | 2.21 | 88.0 | 22.9 | 0.00288 | 650 | 122 | .546 | | | | | 4000<br>5000 | 28.0<br>42.7 | 584 | 3.24<br>4.46 | 106<br>107 | 30.8<br>48.4 | .00264 | 745<br>865 | 161<br>212<br>165 | 790 | | 7<br>21 | | 50,000 | 4000 | 19.5 | 653<br>560 | 2.27 | 102 | 25.7 | .00315 | 70B | 165 | .921<br>.637<br>.841<br>.972<br>.604 | | | | , | 5000 | 30.2 | 618 | 3.19 | 103 | 39.6 | .00345 | 840<br>1105 | 1 222 | -841 | | 13 | | 40.000 | 6000 | 45.4 | 694 | 4.22 | 106 | 85.9 | .00565 | 1105 | 411<br>158 | 972 | | 78 | | 40,000 | 4000<br>5000 | 12.7<br>19.6 | 532<br>508 | 1.51<br>2.09 | 99.2<br>100 | 18.4<br>30.0 | .00338<br>.00398<br>.00619 | 690<br>815<br>1090<br>1550 | 217 | .711 | | | | | 8000 | 28.0 | 598<br>670 | 2.75 | 103 | 61.3 | .00619 | 1090 | 420 | .906 | | 39 | | ļ | 7000 | 35.5 | 754 | 5.07 | 102 | 127 | .0118 | 1650 | 796 | .971<br>.970 | | 1.58 | | | 7500 | 58.7 | 784<br>530<br>888 | 5.11 | 98.9 | 168 | .0151 | 1800 | 1016<br>Lean lim | 970 | | 178 | | 50,000 | 4000<br>5000 | 7.8<br>12.2 | 530<br>800 | 0.981<br>1.30 | 105<br>98.5 | 15,5<br>23,6 | .00458<br>.00502<br>.00686 | 825 | | it blow-out | | <u> </u> | | | 6000 | 17.7 | 674 | 1.72 | 103 | 42.8 | .00686 | 1085 | 411 | .802 | | 18 | | | 7000 | 17.7<br>22.2 | 760 | 1.92 | 103 | 84.5 | .0125 | 1085<br>1555 | 795 | .912 | | 82 | | | 7900 | 25.5 | 829 | 1.81 | 98.2 | 150 | .0189 | 2010 | 1181 | .922 | <del></del> | 161 | | 60,000 | 4000<br>5000 | 5.8<br>8.8 | 555<br>595 | 0.687<br>0.938 | 103<br>99.6 | 17,0<br>23,5 | .00687<br>.00696<br>.00861 | 810 | Lean 11m | it blow-out | | | | | 6000 | 12,1 | 675 | 1.24 | 108 | 38.5 | -00861 | 1085 | 410 | 840 | | | | | 7000 | 15.3 | 751. | 1.37 | 106 | 65,0 | ,0128 | 1550<br>2010 | 799 | .540<br>.879 | | 45 | | | 7900 | 17.6 | 828 | 1,38 | 102 | 98.5 | .0198 | 2010 | 1182 | .883 | -→ | 118 | | | | | · | <del></del> _ | <del>!</del> | Jat | Mix fuel | | · · · · · · · | <u> </u> | | | | 20,000 | 3000 | 20.8 | 530 | 2.19 | 87.7 | 26.3 | 0.00333 | 655 | 125 | 0.487 | | | | | 4000 | 28.0 | 530<br>583 | 5.24 | 106 | 33.2 | .00285 | 655<br>750 | 167 | 0.487<br>.762 | ļ | 7 | | | 5000 | 42.7 | 653 | 4.50 | 108 | 49.5 | .00306 | 860<br>705 | 207<br>155 | .890<br>.557<br>.807 | | 20 | | 50,000 | 4000<br>5000 | 19.5<br>30.2 | 550<br>618 | 2.26<br>3.18 | 101 | 29.5<br>39.8 | .00382 | 830 | 212 | 807 | | 13 | | - 1 | 6000 | 45.4 | 891 | 4.24 | 106 | 88.6 | .00581 | 1110 | 419 | .969 | | 88 | | 40,000 | 4000 | 12.7 | 550 | 1.50 | 102 | 28.0 | .00517 | 4 | | it blow-out | <u> </u> | <del>`</del> | | - | 5000 | 19.6 | 598 | 2.09 | 101 | 31.8 | .00423<br>.00630 | 810<br>1090 | 212<br>418 | .657 | | 37 | | | 6000<br>7000 | 28.0<br>55.5 | 672 | 2.75<br>3.06 | 104<br>102 | 62.4<br>127 | .00630 | 1090<br>1550 | 118<br>795 | .890<br>.970 | | 150 | | | 7500<br>7500 | 38.3<br>58.7 | 758<br>793 | 3.07 | 99.0 | 166 | .0150 | 1805 | 1012 | .977 | | 150<br>171 | | 50,000 | 4000 | 7.8 | 540 | 0.947 | 99.9 | 20.4 | .0150<br>.00599 | | Lean lim | it blow-out | · <del></del> | <del></del> -1 | | , l | 5000 | 12.0<br>17.7<br>22.2 | 602<br>674 | 1.50 | 103 | 21.5 | .00458 | 790<br>1095 | 188 | .558 | <del></del> | 17 | | | 6000<br>7000 | 17.7 | 674 | 1.75 | 104 | 44.9<br>82.0 | .00720 | 1095<br>1545 | 421<br>788 | .787<br>.933 | | 74 | | | 7000<br>7900 | 22.2<br>25.3 | 757<br>8 <b>3</b> 0 | 1.92<br>1.91 | 98.1 | 130 | .0119 | 5050 | 1190 | .955 | | 155 | | 80,000 | 5000 | 8.8 | 597 | 0.094 | 100 | 19,2 | .00587 | 2020<br>850 | 233 | .541 | | | | , | 6000 | 12,1 | 671 | 1.24 | 108 | 35.2 | .00789 | 1085<br>1565 | 233<br>414 | .707 | | | | | 7000 | 15.3 | 750 | 1.37 | 105 | 63.5 | _0129 | 1555 | 805 | .882<br>.890 | | 40<br>105 | | | 7900 | 17.6 | 827 | 1.38 | 102 | 98,2 | .0197 | 2010 | 1183 | •990 | | 700 | TABLE II - PERFORMANCE DATA FROM SEVERAL COMBUSTORS OPERATING WITH MIL-F-5624A (JF-3) AND JET MIX FUELS AT MACH NUMBER 0.60 - Concluded (d) NACA annular combustor | Simulated<br>altitude<br>(ft) | Simulated<br>engine<br>speed<br>(rpm) | Combustor inlet total pressure (in. Hg) | Combustor<br>inlet<br>temperature<br>(°R) | Air flow<br>(1b/sec) | Combustor<br>reference<br>velocity<br>(ft/sec) | Fuel Flow<br>(1b/hr) | Fuel air<br>ratio | Mean com-<br>bustor outlet<br>temperature<br>(°R) | Mean tem-<br>perature rise<br>through com-<br>bustor<br>(°F) | Combustion<br>Efficiency | | Manifold<br>differentia<br>pressure<br>(in. Hg) | |-------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|----------------------|------------------------------------------------|----------------------|-------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------|-----|-------------------------------------------------| | | | | | | | MIL-F-562 | 4A (JP-3) | fuel | | | | | | 30,000 | 7,800 | 19.7 | 540 | 3.03 | 85.8 | 112 | 0.0103 | 1155 | 615 | 0.803 | | | | | 8,700 | 23.5 | 560 | 3.67 | 90.5 | 132 | .0100 | 1195 | 635 | .855 | | | | | 9,600 | 28.2 | 604 | 4.35 | 96.4 | 169 | .0108 | 1303 | 699 | .685 | | | | 40,000 | 7,800 | 12.5 | 560 | 1.91 | 88.5 | 102 | .0148 | 1260 | 700 | .680 | | | | | 8,700 | 15.9 | 540 | 2.31 | 81.0 | 119 | .0144 | 1223 | 683 | 659 | | | | | 9,600 | 18.1 | 579 | 2.71 | 89.7 | 121 | .0124 | 1316 | 737 | 812<br>856 | | | | | 10,400 | 21.3 | 612 | 3.05 | 90.6 | 157 | .0143 | 1485 | 873 | 856 | | | | 50.000 | 11,300 | 24.7 | 653 | 3.32 | 90.7 | 204 | .0171 | 1762 | 1109 | .930 | | | | 50,000 | 10,400 | 12.8 | 602 | 1.65 | 80.3 | 167 | .0283 | 1720 | 1118 | .599 | | | | CH 000 | 11,300 | 15.1 | 663 | 1.83 | 83.0 | 167 | .0254 | 1997 | 1334 | .789 | | | | 55,000 | 11,300 | 11.8 | 646 | 1.27 | 72.0 | 135 | .0296 | 2100 | 1454 | .755 | | **** | | | | | | | | Jet M | ix fuel | | | | | | | 30,000 | 7,800 | 19.7 | 544 | 3.04 | 86.9 | 113 | 0.0103 | 1156 | 612 | 0.800 | | | | | 8,700 | 23.5 | 544 | 3.68 | 88.2 | 133 | .0100 | 1184 | 640 | .859 | | | | | 9,600 | 28.2 | 600 | 4.41 | 96.2 | 168 | .0106 | 1289 | 689 | .883 | | | | 40,000 | 6,100 | 8.30 | 480 | 1.21 | 72.4 | - | | Required to | emperature rise | unattainal | 1.0 | | | i | 7,000 | 10.1 | 500 | 1.50 | 76.7 | <b></b> | <del></del> | Required to | emperature rise | unattainal | ole | | | | 7,800 | 12.5 | 544 | 1.91 | 86.0 | 89.0 | .0130 | 12 <b>11</b> | 667 | .709 | | | | | 8,700 | 14.9 | 544 | 2.32 | 87.6 | 102 | .0122 | 1234 | 690 | .780 | | | | | 9,600 | 18.1 | 582 | 2.71 | 90.2 | 114 | .0117 | 1287 | 705 | .835 | | | | | 10,400<br>11,300<br>10,400 | 21.0 | 617 | 3.06 | 93.0 | 168 | .0155 | 1493 | 876 | .808 | | | | 50,000 | 11,300 | 24.5 | 6 <b>4</b> 8 | 3.32 | 90.8 | 210 | .0176 | 1759 | 1111 | .912 | | | | 30,000 | 10,400 | 12.8 | 611 | 1.65 | 81.5 | 156 | .0263 | 1725 | 1114 | .634 | -, | | | 55,000 | 11,300<br>10,400 | 14.9<br>9.80 | 655<br>605 | 1.81 | 82.3 | 194 | .0297 | _1989 | 1334 | 691 | | | | 33,000 | 11,300 | 11.8 | 641 | 1.10 | 70.3 | 3.73 | | | | unattainal | | <del></del> | | 60,000 | 11,300 | 9.20 | 657 | .805 | 70.8<br>59.6 | 171 | .0377 | 2140 | 1499 | .666 | | | | ~~,~~ | | 0.20 | 100 | .000 | ರಿಕ.ರ | - | | Required to | emperature risc | e unattainal | )16 | | Figure 1. - Variation of combustion efficiency with simulated engine rotor speed over altitude range from 20,000 to 60,000 feet for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. Figure 1. - Continued. Variation of combustion efficiency with simulated engine rotor speed over altitude range from 20,000 to 60,000 feet for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. Figure 1. - Continued. Variation of combustion efficiency with simulated engine rotor speed over altitude range from 20,000 to 60,000 feet for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. Figure 1. - Concluded. Variation of combustion efficiency with simulated engine rotor speed over altitude range from 20,000 to 60,000 feet for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. 3 (a) J33 combustor. Figure 2. - Effect of altitude on combustion efficiency obtained at two constant simulated rotor speeds for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. (b) J35 combustor. Figure 2. - Continued. Effect of altitude on combustion efficiency obtained at two constant simulated rotor speeds for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. (c) J47 combustor. Figure 2. - Continued. Effect of altitude on combustion efficiency obtained at two constant simulated rotor speeds for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. #### (d) NACA annular combustor. Figure 2. - Concluded. Effect of altitude on combustion efficiency obtained at two constant simulated rotor speeds for several combustors. Fuels, Jet Mix and MIL-F-5624A (JP-3); Mach number, 0.6. Figure 3. - Comparison of altitude operational limits obtained with Jet Mix and MTL-F-5624A (JP-3) fuels for several combustors. Mach number, 0.6. (a) J33 combustor. Figure 3. - Continued. Comparison of altitude operational limits obtained with Jet Mix and MII-F-5624A (JP-3) fuels for several combustors. Mach number, 0.6. Simulated engine rotor speed, percent normal rated (d) NACA annular combustor. Figure 3. - Concluded. Comparison of altitude operational limits obtained with Jet Mix and MIL-F-5624A (JP-3) fuels for several combustors. Mach number, 0.6. Figure 4. - Carbon deposition of Jet Mix and MIL-F-5624A (JP-3) fuels correlated with volumetric average boiling temperature and hydrogen-carbon weight ratio in J33 combustor. Simulated engine conditions: altitude, 20,000 feet; engine speed, 90-percent normal rated; Mach number, 0.0; run time, 4 hours.